A practical approximation algorithm for the LTS estimator

نویسندگان

  • David M. Mount
  • Nathan S. Netanyahu
  • Christine D. Piatko
  • Angela Y. Wu
  • Ruth Silverman
چکیده

The linear least trimmed squares (LTS) estimator is a statistical technique for fitting a linear model to a set of points. It was proposed by Rousseeuw as a robust alternative to the classical least squares estimator. Given a set of n points in Rd, the objective is to minimize the sum of the smallest 50% squared residuals (or more generally any given fraction). There exist practical heuristics for computing the linear LTS estimator, but they provide no guarantees on the accuracy of the final result. Two results are presented. First, a measure of the numerical condition of a set of points is introduced. Based on this measure, a probabilistic analysis of the accuracy of the best LTS fit resulting from a set of random elemental fits is presented. This analysis shows that as the condition of the point set improves, the accuracy of the resulting fit also increases. Second, a new approximation algorithm for LTS, called Adaptive-LTS, is described. Given bounds on the minimum and maximum slope coefficients, this algorithm returns an approximation to the optimal LTS fit whose slope coefficients lie within the given bounds. Empirical evidence of this algorithm’s efficiency and effectiveness is provided for a variety of data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of the Parameters of the Lomax Distribution using the EM Algorithm and Lindley Approximation

Estimation of statistical distribution parameter is one of the important subject of statistical inference. Due to the applications of Lomax distribution in business, economy, statistical science, queue theory, internet traffic modeling and so on, in this paper, the parameters of Lomax distribution under type II censored samples using maximum likelihood and Bayesian methods are estimated. Wherea...

متن کامل

Fast and robust bootstrap for LTS

The Least Trimmed Squares (LTS) estimator is a frequently used robust estimator of regression. When it comes to inference for the parameters of the regression model, the asymptotic normality of the LTS estimator can be used. However, this is usually not appropriate in situations where the use of robust estimators is recommended. The bootstrap method constitutes an alternative, but has two major...

متن کامل

Design of an Adaptive Fuzzy Estimator for Force/Position Tracking in Robot Manipulators

This paper presents a stable new algorithm for force/position control in robot manipulators. In this algorithm, position vectors are measured by sensors and then used in the control law. Since using force sensor has some issues such as high costs and technical problems, an approach is presented to overcome these issues. In this respect, force sensor is replaced by an adaptive fuzzy estimator to...

متن کامل

An algorithm for computing exact least-trimmed squares estimate of simple linear regression with constraints

The least-trimmed squares estimation (LTS) is a robust solution for regression problems. On the one hand, it can achieve any given breakdown value by setting a proper trimming fraction. On the other hand, it has √ n-consistency and asymptotic normality under some conditions. In addition, the LTS estimator is regression, scale, and a6ne equivariant. In practical regression problems, we often nee...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 99  شماره 

صفحات  -

تاریخ انتشار 2016